Neural Nets

The Equations That Changed The World

/ 2 min read

Download As PDF

Today, I stumbled upon an article highlighting the world’s most transformative equations. It was a bit like a trip down memory lane, but instead of nostalgia, it felt like trying to decipher hieroglyphics. Remembering some of these equations from school gave me a headache and made me question all my life choices. Thought I’d share the joy (and the pain :)

1.Pythagoras’s Theorem

a2+b2=c2a^2 + b^2 = c^2

2.Logarithms

logxy=logx+logy\log xy = \log x + \log y

3.Calculus

dfdt=limh0f(t+h)f(t)h\frac{df}{dt} = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}

4.Law of Gravity

F=Gm1m2r2F = G\frac{m_1 m_2}{r^2}

5.The Square Root of Minus One

i2=1i^2 = -1

6.Euler’s Formula for Polyhedra

VE+F=2V - E + F = 2

7.Normal Distribution

Φ(x)=12πσe(xμ)22σ2\Phi(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}

8.Wave Equation

2ut2=c22ux2\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}

9.Fourier Transform

(ω)=f(x)e2πiωxdx(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i \omega x}dx

10.Navier-Stokes Equation

ρ(vt+vv)=p+T+f\rho \left( \frac{\partial v}{\partial t} + v \cdot \nabla v \right) = - \nabla p + \nabla \cdot \mathbf{T} + f

11.Maxwell’s Equations

E=0\nabla \cdot \mathbf{E} = 0 H=0\nabla \cdot \mathbf{H} = 0 ×E=1cHt\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} ×H=1cEt\nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}

12.Second Law of Thermodynamics

dS0dS \geq 0

13.Relativity

E=mc2E = mc^2

14.Schrödinger’s Equation

iψt=Hψi\hbar \frac{\partial \psi}{\partial t} = H \psi

15.Information Theory

H=p(x)logp(x)H = - \sum p(x) \log p(x)

16.Chaos Theory

xt+1=kxt(1xt)x_{t+1} = k x_t (1 - x_t)

17.Black-Scholes Equation

12σ2S22VS2+rSVS+VtrV=0\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + r S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - r V = 0